root.skip-to-content
Log In
Log in with Shibboleth
Communities & Collections
Browse TUstorage
Statistics
Log In
Log in with Shibboleth
Home
Public Test Area
Distributionen
MDPI AG
Periodika
Fluids
2024
The Potential of Machine Learning Methods for Separated Turbulent Flow Simulations: Classical Versus Dynamic Methods
Distribution
PDF
The Potential of Machine Learning Methods for Separated Turbulent Flow Simulations: Classical Versus Dynamic Methods
Loading...
Format
pdf
Authors
Stefan Heinz
Journal ISSN
Publisher
Dataset
No Thumbnail Available
Dataset
The Potential of Machine Learning Methods for Separated Turbulent Flow Simulations: Classical Versus Dynamic Methods
(
MDPI AG
,
2024
)
Stefan Heinz
Show more
Description
Keywords
URI
https://tustorage.ulb.tu-darmstadt.de/handle/tustorage/18669
Full item page
Files
Original bundle
Now showing
1 - 1 of 1
Loading...
Name:
fluids-09-12-00278.pdf
Size:
6.65 MB
Format:
Adobe Portable Document Format
Download