The Potential of Machine Learning Methods for Separated Turbulent Flow Simulations: Classical Versus Dynamic Methods
dc.contributor.author | Stefan Heinz | |
dc.date.accessioned | 2025-04-16T12:52:49Z | |
dc.date.available | 2025-04-16T12:52:49Z | |
dc.identifier.uri | https://tustorage.ulb.tu-darmstadt.de/handle/tustorage/18670 | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject.ddc | 530 | |
dc.title | The Potential of Machine Learning Methods for Separated Turbulent Flow Simulations: Classical Versus Dynamic Methods | |
dc.type | supplierxml | |
dspace.entity.type | Distribution | |
relation.isDatasetOfDistribution | 67a1dfe0-8635-4353-9e01-887fae02371b | |
relation.isDatasetOfDistribution.latestForDiscovery | 67a1dfe0-8635-4353-9e01-887fae02371b |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- fluids-09-12-00278.xml
- Size:
- 288.9 KB
- Format:
- Extensible Markup Language