A Fully Automatic, Interpretable and Adaptive Machine Learning Approach to Map Burned Area from Remote Sensing

dc.contributor.authorDaniela Stroppiana
dc.contributor.authorGloria Bordogna
dc.contributor.authorMatteo Sali
dc.contributor.authorMirco Boschetti
dc.contributor.authorGiovanna Sona
dc.contributor.authorPietro Alessandro Brivio
dc.date.accessioned2025-05-14T12:53:52Z
dc.date.available2025-05-14T12:53:52Z
dc.identifier.urihttps://tustorage.ulb.tu-darmstadt.de/handle/tustorage/21956
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc550
dc.titleA Fully Automatic, Interpretable and Adaptive Machine Learning Approach to Map Burned Area from Remote Sensing
dc.typesupplierxml
dspace.entity.typeDistribution
relation.isDatasetOfDistribution89e2e9d2-9144-4be0-94da-85fdde6b6f87
relation.isDatasetOfDistribution.latestForDiscovery89e2e9d2-9144-4be0-94da-85fdde6b6f87

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ijgi-10-08-00546.xml
Size:
249.19 KB
Format:
Extensible Markup Language

Collections