A Fully Automatic, Interpretable and Adaptive Machine Learning Approach to Map Burned Area from Remote Sensing
dc.contributor.author | Daniela Stroppiana | |
dc.contributor.author | Gloria Bordogna | |
dc.contributor.author | Matteo Sali | |
dc.contributor.author | Mirco Boschetti | |
dc.contributor.author | Giovanna Sona | |
dc.contributor.author | Pietro Alessandro Brivio | |
dc.date.accessioned | 2025-05-14T12:53:52Z | |
dc.date.available | 2025-05-14T12:53:52Z | |
dc.identifier.uri | https://tustorage.ulb.tu-darmstadt.de/handle/tustorage/21956 | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject.ddc | 550 | |
dc.title | A Fully Automatic, Interpretable and Adaptive Machine Learning Approach to Map Burned Area from Remote Sensing | |
dc.type | supplierxml | |
dspace.entity.type | Distribution | |
relation.isDatasetOfDistribution | 89e2e9d2-9144-4be0-94da-85fdde6b6f87 | |
relation.isDatasetOfDistribution.latestForDiscovery | 89e2e9d2-9144-4be0-94da-85fdde6b6f87 |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- ijgi-10-08-00546.xml
- Size:
- 249.19 KB
- Format:
- Extensible Markup Language