A Deep Learning Approach to Urban Street Functionality Prediction Based on Centrality Measures and Stacked Denoising Autoencoder

dc.contributor.authorFatemeh Noori
dc.contributor.authorHamid Kamangir
dc.contributor.authorScott A. King
dc.contributor.authorAlaa Sheta
dc.contributor.authorMohammad Pashaei
dc.contributor.authorAbbas SheikhMohammadZadeh
dc.date.accessioned2025-05-14T16:30:30Z
dc.date.available2025-05-14T16:30:30Z
dc.identifier.urihttps://tustorage.ulb.tu-darmstadt.de/handle/tustorage/31417
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc550
dc.titleA Deep Learning Approach to Urban Street Functionality Prediction Based on Centrality Measures and Stacked Denoising Autoencoder
dc.typepdf
dspace.entity.typeDistribution
relation.isDatasetOfDistribution7b33a2d4-1896-490d-8bb9-11f470727459
relation.isDatasetOfDistribution.latestForDiscovery7b33a2d4-1896-490d-8bb9-11f470727459

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ijgi-09-07-00456.pdf
Size:
3.9 MB
Format:
Adobe Portable Document Format

Collections