A Multidimensional Study of the 2023 Beijing Extreme Rainfall: Theme, Location, and Sentiment Based on Social Media Data
dc.contributor.author | Xun Zhang | |
dc.contributor.author | Xin Zhang | |
dc.contributor.author | Yingchun Zhang | |
dc.contributor.author | Ying Liu | |
dc.contributor.author | Rui Zhou | |
dc.contributor.author | Abdureyim Raxidin | |
dc.contributor.author | Min Li | |
dc.date.accessioned | 2025-05-14T17:09:05Z | |
dc.date.available | 2025-05-14T17:09:05Z | |
dc.identifier.uri | https://tustorage.ulb.tu-darmstadt.de/handle/tustorage/33114 | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject.ddc | 550 | |
dc.title | A Multidimensional Study of the 2023 Beijing Extreme Rainfall: Theme, Location, and Sentiment Based on Social Media Data | |
dc.type | supplierxml | |
dspace.entity.type | Distribution | |
relation.isDatasetOfDistribution | 5010846d-e0e7-4aea-b5b6-602e6ca83124 | |
relation.isDatasetOfDistribution.latestForDiscovery | 5010846d-e0e7-4aea-b5b6-602e6ca83124 |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- ijgi-14-04-00136.xml
- Size:
- 159.23 KB
- Format:
- Extensible Markup Language