A Deep Learning Approach to Urban Street Functionality Prediction Based on Centrality Measures and Stacked Denoising Autoencoder
| dc.contributor.author | Fatemeh Noori | |
| dc.contributor.author | Hamid Kamangir | |
| dc.contributor.author | Scott A. King | |
| dc.contributor.author | Alaa Sheta | |
| dc.contributor.author | Mohammad Pashaei | |
| dc.contributor.author | Abbas SheikhMohammadZadeh | |
| dc.date.accessioned | 2025-05-14T16:30:31Z | |
| dc.date.available | 2025-05-14T16:30:31Z | |
| dc.identifier.uri | https://tustorage.ulb.tu-darmstadt.de/handle/tustorage/31418 | |
| dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
| dc.subject.ddc | 550 | |
| dc.title | A Deep Learning Approach to Urban Street Functionality Prediction Based on Centrality Measures and Stacked Denoising Autoencoder | |
| dc.type | supplierxml | |
| dspace.entity.type | Distribution | |
| relation.isDatasetOfDistribution | 7b33a2d4-1896-490d-8bb9-11f470727459 | |
| relation.isDatasetOfDistribution.latestForDiscovery | 7b33a2d4-1896-490d-8bb9-11f470727459 |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- ijgi-09-07-00456.xml
- Size:
- 262.05 KB
- Format:
- Extensible Markup Language