Predictive Analysis of Structural Damage in Submerged Structures: A Case Study Approach Using Machine Learning

dc.contributor.authorAlexandre Brás dos Santos
dc.contributor.authorHugo Mesquita Vasconcelos
dc.contributor.authorTiago M. R. M. Domingues
dc.contributor.authorPedro J. S. C. P. Sousa
dc.contributor.authorSusana Dias
dc.contributor.authorRogério F. F. Lopes
dc.contributor.authorMarco L. P. Parente
dc.contributor.authorMário Tomé
dc.contributor.authorAdélio M. S. Cavadas
dc.contributor.authorPedro M. G. P. Moreira
dc.date.accessioned2025-04-16T12:58:15Z
dc.date.available2025-04-16T12:58:15Z
dc.identifier.urihttps://tustorage.ulb.tu-darmstadt.de/handle/tustorage/18924
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc530
dc.titlePredictive Analysis of Structural Damage in Submerged Structures: A Case Study Approach Using Machine Learning
dc.typesupplierxml
dspace.entity.typeDistribution
relation.isDatasetOfDistribution6e8de675-3ed4-4741-9741-f0d9a6dc2fd7
relation.isDatasetOfDistribution.latestForDiscovery6e8de675-3ed4-4741-9741-f0d9a6dc2fd7

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
fluids-10-01-00010.xml
Size:
165.33 KB
Format:
Extensible Markup Language

Collections