Multi-Source Data and Machine Learning-Based Refined Governance for Responding to Public Health Emergencies in Beijing: A Case Study of COVID-19
dc.contributor.author | Demiao Yu | |
dc.contributor.author | Xiaoran Huang | |
dc.contributor.author | Hengyi Zang | |
dc.contributor.author | Yuanwei Li | |
dc.contributor.author | Yuchen Qin | |
dc.contributor.author | Daoyong Li | |
dc.date.accessioned | 2025-05-14T14:26:31Z | |
dc.date.available | 2025-05-14T14:26:31Z | |
dc.identifier.uri | https://tustorage.ulb.tu-darmstadt.de/handle/tustorage/25964 | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject.ddc | 550 | |
dc.title | Multi-Source Data and Machine Learning-Based Refined Governance for Responding to Public Health Emergencies in Beijing: A Case Study of COVID-19 | |
dc.type | supplierxml | |
dspace.entity.type | Distribution | |
relation.isDatasetOfDistribution | ee6cc0d1-743c-4480-89c4-c0148119ec35 | |
relation.isDatasetOfDistribution.latestForDiscovery | ee6cc0d1-743c-4480-89c4-c0148119ec35 |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- ijgi-12-02-00069.xml
- Size:
- 165.89 KB
- Format:
- Extensible Markup Language