Multi-Source Data and Machine Learning-Based Refined Governance for Responding to Public Health Emergencies in Beijing: A Case Study of COVID-19

dc.contributor.authorDemiao Yu
dc.contributor.authorXiaoran Huang
dc.contributor.authorHengyi Zang
dc.contributor.authorYuanwei Li
dc.contributor.authorYuchen Qin
dc.contributor.authorDaoyong Li
dc.date.accessioned2025-05-14T14:26:31Z
dc.date.available2025-05-14T14:26:31Z
dc.identifier.urihttps://tustorage.ulb.tu-darmstadt.de/handle/tustorage/25964
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc550
dc.titleMulti-Source Data and Machine Learning-Based Refined Governance for Responding to Public Health Emergencies in Beijing: A Case Study of COVID-19
dc.typesupplierxml
dspace.entity.typeDistribution
relation.isDatasetOfDistributionee6cc0d1-743c-4480-89c4-c0148119ec35
relation.isDatasetOfDistribution.latestForDiscoveryee6cc0d1-743c-4480-89c4-c0148119ec35

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ijgi-12-02-00069.xml
Size:
165.89 KB
Format:
Extensible Markup Language

Collections