AIRSENSE-TO-ACT: A Concept Paper for COVID-19 Countermeasures Based on Artificial Intelligence Algorithms and Multi-Source Data Processing
dc.contributor.author | Alessandro Sebastianelli | |
dc.contributor.author | Francesco Mauro | |
dc.contributor.author | Gianluca Di Cosmo | |
dc.contributor.author | Fabrizio Passarini | |
dc.contributor.author | Marco Carminati | |
dc.contributor.author | Silvia Liberata Ullo | |
dc.date.accessioned | 2025-05-14T12:04:59Z | |
dc.date.available | 2025-05-14T12:04:59Z | |
dc.identifier.uri | https://tustorage.ulb.tu-darmstadt.de/handle/tustorage/19924 | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject.ddc | 550 | |
dc.title | AIRSENSE-TO-ACT: A Concept Paper for COVID-19 Countermeasures Based on Artificial Intelligence Algorithms and Multi-Source Data Processing | |
dc.type | supplierxml | |
dspace.entity.type | Distribution | |
relation.isDatasetOfDistribution | 4be423b2-b655-4682-849d-9632b9293374 | |
relation.isDatasetOfDistribution.latestForDiscovery | 4be423b2-b655-4682-849d-9632b9293374 |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- ijgi-10-01-00034.xml
- Size:
- 200.58 KB
- Format:
- Extensible Markup Language