Random Forest-Based Grouping for Accurate SOH Estimation in Second-Life Batteries

dc.contributor.authorJoelton Deonei Gotz
dc.contributor.authorJosé Rodolfo Galvão
dc.contributor.authorFernanda Cristina Corrêa
dc.contributor.authorAlceu André Badin
dc.contributor.authorHugo Valadares Siqueira
dc.contributor.authorEmilson Ribeiro Viana
dc.contributor.authorAttilio Converti
dc.contributor.authorMilton Borsato
dc.date.accessioned2025-05-21T03:50:34Z
dc.date.available2025-05-21T03:50:34Z
dc.identifier.urihttps://tustorage.ulb.tu-darmstadt.de/handle/tustorage/34615
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc530
dc.titleRandom Forest-Based Grouping for Accurate SOH Estimation in Second-Life Batteries
dc.typepdf
dspace.entity.typeDistribution
relation.isDatasetOfDistribution3e6c2cd6-e68a-4cd9-b714-acdf7961c225
relation.isDatasetOfDistribution.latestForDiscovery3e6c2cd6-e68a-4cd9-b714-acdf7961c225

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
vehicles-06-02-00038.pdf
Size:
3.27 MB
Format:
Adobe Portable Document Format

Collections