mgwr: A Python Implementation of Multiscale Geographically Weighted Regression for Investigating Process Spatial Heterogeneity and Scale
dc.contributor.author | Taylor Oshan | |
dc.contributor.author | Ziqi Li | |
dc.contributor.author | Wei Kang | |
dc.contributor.author | Levi Wolf | |
dc.contributor.author | A. Fotheringham | |
dc.date.accessioned | 2025-05-14T15:20:10Z | |
dc.date.available | 2025-05-14T15:20:10Z | |
dc.identifier.uri | https://tustorage.ulb.tu-darmstadt.de/handle/tustorage/28357 | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject.ddc | 550 | |
dc.title | mgwr: A Python Implementation of Multiscale Geographically Weighted Regression for Investigating Process Spatial Heterogeneity and Scale | |
dc.type | ||
dspace.entity.type | Distribution | |
relation.isDatasetOfDistribution | 06da02a2-6810-49ce-ad14-d2463342f125 | |
relation.isDatasetOfDistribution.latestForDiscovery | 06da02a2-6810-49ce-ad14-d2463342f125 |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- ijgi-08-06-00269.pdf
- Size:
- 6.71 MB
- Format:
- Adobe Portable Document Format