mgwr: A Python Implementation of Multiscale Geographically Weighted Regression for Investigating Process Spatial Heterogeneity and Scale
| dc.contributor.author | Taylor Oshan | |
| dc.contributor.author | Ziqi Li | |
| dc.contributor.author | Wei Kang | |
| dc.contributor.author | Levi Wolf | |
| dc.contributor.author | A. Fotheringham | |
| dc.date.accessioned | 2025-05-14T15:20:10Z | |
| dc.date.available | 2025-05-14T15:20:10Z | |
| dc.identifier.uri | https://tustorage.ulb.tu-darmstadt.de/handle/tustorage/28357 | |
| dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
| dc.subject.ddc | 550 | |
| dc.title | mgwr: A Python Implementation of Multiscale Geographically Weighted Regression for Investigating Process Spatial Heterogeneity and Scale | |
| dc.type | ||
| dspace.entity.type | Distribution | |
| relation.isDatasetOfDistribution | 06da02a2-6810-49ce-ad14-d2463342f125 | |
| relation.isDatasetOfDistribution.latestForDiscovery | 06da02a2-6810-49ce-ad14-d2463342f125 |
Files
Original bundle
1 - 1 of 1