A Comparative Study of Various Deep Learning Approaches to Shape Encoding of Planar Geospatial Objects
dc.contributor.author | Xiongfeng Yan | |
dc.contributor.author | Min Yang | |
dc.date.accessioned | 2025-05-14T14:11:24Z | |
dc.date.available | 2025-05-14T14:11:24Z | |
dc.identifier.uri | https://tustorage.ulb.tu-darmstadt.de/handle/tustorage/25274 | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject.ddc | 550 | |
dc.title | A Comparative Study of Various Deep Learning Approaches to Shape Encoding of Planar Geospatial Objects | |
dc.type | supplierxml | |
dspace.entity.type | Distribution | |
relation.isDatasetOfDistribution | 52226b45-6e84-452b-b57b-2d02f18179d3 | |
relation.isDatasetOfDistribution.latestForDiscovery | 52226b45-6e84-452b-b57b-2d02f18179d3 |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- ijgi-11-10-00527.xml
- Size:
- 137.55 KB
- Format:
- Extensible Markup Language