A Comparative Study of Various Deep Learning Approaches to Shape Encoding of Planar Geospatial Objects

dc.contributor.authorXiongfeng Yan
dc.contributor.authorMin Yang
dc.date.accessioned2025-05-14T14:11:24Z
dc.date.available2025-05-14T14:11:24Z
dc.identifier.urihttps://tustorage.ulb.tu-darmstadt.de/handle/tustorage/25274
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc550
dc.titleA Comparative Study of Various Deep Learning Approaches to Shape Encoding of Planar Geospatial Objects
dc.typesupplierxml
dspace.entity.typeDistribution
relation.isDatasetOfDistribution52226b45-6e84-452b-b57b-2d02f18179d3
relation.isDatasetOfDistribution.latestForDiscovery52226b45-6e84-452b-b57b-2d02f18179d3

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ijgi-11-10-00527.xml
Size:
137.55 KB
Format:
Extensible Markup Language

Collections