A Deep Learning Approach for Wave Forecasting Based on a Spatially Correlated Wind Feature, with a Case Study in the Java Sea, Indonesia

dc.contributor.authorDidit Adytia
dc.contributor.authorDeni Saepudin
dc.contributor.authorSri Redjeki Pudjaprasetya
dc.contributor.authorSemeidi Husrin
dc.contributor.authorArdhasena Sopaheluwakan
dc.date.accessioned2025-04-16T11:37:54Z
dc.date.available2025-04-16T11:37:54Z
dc.identifier.urihttps://tustorage.ulb.tu-darmstadt.de/handle/tustorage/15090
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc530
dc.titleA Deep Learning Approach for Wave Forecasting Based on a Spatially Correlated Wind Feature, with a Case Study in the Java Sea, Indonesia
dc.typesupplierxml
dspace.entity.typeDistribution
relation.isDatasetOfDistribution94d25ba1-6718-464c-aed7-9a7633d2f9e3
relation.isDatasetOfDistribution.latestForDiscovery94d25ba1-6718-464c-aed7-9a7633d2f9e3

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
fluids-07-01-00039.xml
Size:
156.34 KB
Format:
Extensible Markup Language

Collections