Detecting Anomalies in Financial Data Using Machine Learning Algorithms

dc.contributor.authorAlexander Bakumenko
dc.contributor.authorAhmed Elragal
dc.date.accessioned2025-05-22T11:06:22Z
dc.date.available2025-05-22T11:06:22Z
dc.identifier.urihttps://tustorage.ulb.tu-darmstadt.de/handle/tustorage/36812
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc600
dc.titleDetecting Anomalies in Financial Data Using Machine Learning Algorithms
dc.typesupplierxml
dspace.entity.typeDistribution
relation.isDatasetOfDistributioncceba988-66c4-4eed-822f-1078415ca554
relation.isDatasetOfDistribution.latestForDiscoverycceba988-66c4-4eed-822f-1078415ca554

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
systems-10-05-00130.xml
Size:
220.28 KB
Format:
Extensible Markup Language

Collections