Detecting Anomalies in Financial Data Using Machine Learning Algorithms

datacite.relatedItem.firstPage130
datacite.relatedItem.issue5
datacite.relatedItem.relatedIdentifierTypeISSN
datacite.relatedItem.relatedItemIdentifier2079-8954
datacite.relatedItem.relationTypeIsPublishedIn
datacite.relatedItem.titleSystems
datacite.relatedItem.volume10
dc.contributor.authorAlexander Bakumenko
dc.contributor.authorAhmed Elragal
dc.date.accessioned2025-05-22T11:06:21Z
dc.date.available2025-05-22T11:06:21Z
dc.date.issued2022
dc.identifier.doihttps://doi.org/10.3390/systems10050130
dc.identifier.otherjz000178-0129
dc.identifier.urihttps://tustorage.ulb.tu-darmstadt.de/handle/tustorage/36810
dc.publisherMDPI AG
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc600
dc.titleDetecting Anomalies in Financial Data Using Machine Learning Algorithms
dc.typeArticle
dcat.distribution.pdfhttps://tustorage.ulb.tu-darmstadt.de/handle/tustorage/36811
dcat.distribution.supplierxmlhttps://tustorage.ulb.tu-darmstadt.de/handle/tustorage/36812
dspace.entity.typeDataset
relation.isDistributionOfDataset4744d631-ad7c-4d39-a3b7-b1824c2b0910
relation.isDistributionOfDataset0ed514d2-e703-48c2-ad68-d9722c5cce6d
relation.isDistributionOfDataset1ece04d2-e537-408f-a6b6-14e2d5f0cff8
relation.isDistributionOfDataset.latestForDiscovery4744d631-ad7c-4d39-a3b7-b1824c2b0910
wdm.archivematicaaipuuid.original76ca3acd-336b-4e21-9bf1-cb1155d72f8e

Files

Collections