A Deep Learning Approach to Urban Street Functionality Prediction Based on Centrality Measures and Stacked Denoising Autoencoder

datacite.relatedItem.firstPage456
datacite.relatedItem.issue7
datacite.relatedItem.relatedIdentifierTypeISSN
datacite.relatedItem.relatedItemIdentifier2220-9964
datacite.relatedItem.relationTypeIsPublishedIn
datacite.relatedItem.titleIJGI
datacite.relatedItem.volume9
dc.contributor.authorFatemeh Noori
dc.contributor.authorHamid Kamangir
dc.contributor.authorScott A. King
dc.contributor.authorAlaa Sheta
dc.contributor.authorMohammad Pashaei
dc.contributor.authorAbbas SheikhMohammadZadeh
dc.date.accessioned2025-05-14T16:30:30Z
dc.date.available2025-05-14T16:30:30Z
dc.date.issued2020
dc.identifier.doihttps://doi.org/10.3390/ijgi9070456
dc.identifier.otherjz000157-0452
dc.identifier.urihttps://tustorage.ulb.tu-darmstadt.de/handle/tustorage/31416
dc.publisherMDPI AG
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc550
dc.titleA Deep Learning Approach to Urban Street Functionality Prediction Based on Centrality Measures and Stacked Denoising Autoencoder
dc.typeArticle
dcat.distribution.pdfhttps://tustorage.ulb.tu-darmstadt.de/handle/tustorage/31417
dcat.distribution.supplierxmlhttps://tustorage.ulb.tu-darmstadt.de/handle/tustorage/31418
dspace.entity.typeDataset
relation.isDistributionOfDatasetc14668ef-9f77-4c5a-857b-8f4557c2fb0a
relation.isDistributionOfDataseta3cd3c84-24dd-4a07-ae54-286a8815f3ed
relation.isDistributionOfDataset6b6cba8c-4f4f-44cb-9d68-c35a7ac91f7c
relation.isDistributionOfDataset.latestForDiscoveryc14668ef-9f77-4c5a-857b-8f4557c2fb0a
wdm.archivematicaaipuuid.original98b94594-4843-457f-937b-37b60e245d71

Files

Collections