The Potential of Machine Learning Methods for Separated Turbulent Flow Simulations: Classical Versus Dynamic Methods
datacite.relatedItem.firstPage | 278 | |
datacite.relatedItem.issue | 12 | |
datacite.relatedItem.relatedIdentifierType | ISSN | |
datacite.relatedItem.relatedItemIdentifier | 2311-5521 | |
datacite.relatedItem.relationType | IsPublishedIn | |
datacite.relatedItem.title | Fluids | |
datacite.relatedItem.volume | 9 | |
dc.contributor.author | Stefan Heinz | |
dc.date.accessioned | 2025-04-16T12:52:48Z | |
dc.date.available | 2025-04-16T12:52:48Z | |
dc.date.issued | 2024 | |
dc.identifier.doi | https://doi.org/10.3390/fluids9120278 | |
dc.identifier.other | jz000104-0268 | |
dc.identifier.uri | https://tustorage.ulb.tu-darmstadt.de/handle/tustorage/18668 | |
dc.publisher | MDPI AG | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject.ddc | 530 | |
dc.title | The Potential of Machine Learning Methods for Separated Turbulent Flow Simulations: Classical Versus Dynamic Methods | |
dc.type | Article | |
dcat.distribution.pdf | https://tustorage.ulb.tu-darmstadt.de/handle/tustorage/18669 | |
dcat.distribution.supplierxml | https://tustorage.ulb.tu-darmstadt.de/handle/tustorage/18670 | |
dspace.entity.type | Dataset | |
relation.isDistributionOfDataset | 83d607c1-21c6-47f9-9107-d8be677442da | |
relation.isDistributionOfDataset | f692eb5f-f777-4b86-8e61-c3d83b35232a | |
relation.isDistributionOfDataset | 08a8e9ed-b6b2-4757-9944-432d9a43f08b | |
relation.isDistributionOfDataset.latestForDiscovery | 83d607c1-21c6-47f9-9107-d8be677442da | |
wdm.archivematicaaipuuid.original | 3c944775-dd67-48cc-9fff-eee557a917ea |