The Potential of Machine Learning Methods for Separated Turbulent Flow Simulations: Classical Versus Dynamic Methods

datacite.relatedItem.firstPage278
datacite.relatedItem.issue12
datacite.relatedItem.relatedIdentifierTypeISSN
datacite.relatedItem.relatedItemIdentifier2311-5521
datacite.relatedItem.relationTypeIsPublishedIn
datacite.relatedItem.titleFluids
datacite.relatedItem.volume9
dc.contributor.authorStefan Heinz
dc.date.accessioned2025-04-16T12:52:48Z
dc.date.available2025-04-16T12:52:48Z
dc.date.issued2024
dc.identifier.doihttps://doi.org/10.3390/fluids9120278
dc.identifier.otherjz000104-0268
dc.identifier.urihttps://tustorage.ulb.tu-darmstadt.de/handle/tustorage/18668
dc.publisherMDPI AG
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc530
dc.titleThe Potential of Machine Learning Methods for Separated Turbulent Flow Simulations: Classical Versus Dynamic Methods
dc.typeArticle
dcat.distribution.pdfhttps://tustorage.ulb.tu-darmstadt.de/handle/tustorage/18669
dcat.distribution.supplierxmlhttps://tustorage.ulb.tu-darmstadt.de/handle/tustorage/18670
dspace.entity.typeDataset
relation.isDistributionOfDataset83d607c1-21c6-47f9-9107-d8be677442da
relation.isDistributionOfDatasetf692eb5f-f777-4b86-8e61-c3d83b35232a
relation.isDistributionOfDataset08a8e9ed-b6b2-4757-9944-432d9a43f08b
relation.isDistributionOfDataset.latestForDiscovery83d607c1-21c6-47f9-9107-d8be677442da
wdm.archivematicaaipuuid.original3c944775-dd67-48cc-9fff-eee557a917ea

Files

Collections