AIRSENSE-TO-ACT: A Concept Paper for COVID-19 Countermeasures Based on Artificial Intelligence Algorithms and Multi-Source Data Processing
datacite.relatedItem.firstPage | 34 | |
datacite.relatedItem.issue | 1 | |
datacite.relatedItem.relatedIdentifierType | ISSN | |
datacite.relatedItem.relatedItemIdentifier | 2220-9964 | |
datacite.relatedItem.relationType | IsPublishedIn | |
datacite.relatedItem.title | IJGI | |
datacite.relatedItem.volume | 10 | |
dc.contributor.author | Alessandro Sebastianelli | |
dc.contributor.author | Francesco Mauro | |
dc.contributor.author | Gianluca Di Cosmo | |
dc.contributor.author | Fabrizio Passarini | |
dc.contributor.author | Marco Carminati | |
dc.contributor.author | Silvia Liberata Ullo | |
dc.date.accessioned | 2025-05-14T12:04:58Z | |
dc.date.available | 2025-05-14T12:04:58Z | |
dc.date.issued | 2021 | |
dc.identifier.doi | https://doi.org/10.3390/ijgi10010034 | |
dc.identifier.other | jz000145-0034 | |
dc.identifier.uri | https://tustorage.ulb.tu-darmstadt.de/handle/tustorage/19922 | |
dc.publisher | MDPI AG | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject.ddc | 550 | |
dc.title | AIRSENSE-TO-ACT: A Concept Paper for COVID-19 Countermeasures Based on Artificial Intelligence Algorithms and Multi-Source Data Processing | |
dc.type | Article | |
dcat.distribution.pdf | https://tustorage.ulb.tu-darmstadt.de/handle/tustorage/19923 | |
dcat.distribution.supplierxml | https://tustorage.ulb.tu-darmstadt.de/handle/tustorage/19924 | |
dspace.entity.type | Dataset | |
relation.isDistributionOfDataset | 57554651-bb4f-4483-b556-69bdc87a8d44 | |
relation.isDistributionOfDataset | 828ba88f-2457-4440-9012-b3ae1972befe | |
relation.isDistributionOfDataset | 87ad9c3e-f84e-40ac-b713-54e48aca4dfe | |
relation.isDistributionOfDataset.latestForDiscovery | 57554651-bb4f-4483-b556-69bdc87a8d44 | |
wdm.archivematicaaipuuid.original | fc48faea-fb18-41f4-b00b-837f5709bd19 |