Predicting Multi-Period Corporate Default Based on Bayesian Estimation of Forward Intensity—Evidence from China

datacite.relatedItem.firstPage18
datacite.relatedItem.issue1
datacite.relatedItem.relatedIdentifierTypeISSN
datacite.relatedItem.relatedItemIdentifier2079-8954
datacite.relatedItem.relationTypeIsPublishedIn
datacite.relatedItem.titleSystems
datacite.relatedItem.volume11
dc.contributor.authorZhengfang Ni
dc.contributor.authorMinghui Jiang
dc.contributor.authorWentao Zhan
dc.date.accessioned2025-05-22T11:19:20Z
dc.date.available2025-05-22T11:19:20Z
dc.date.issued2022
dc.identifier.doihttps://doi.org/10.3390/systems11010018
dc.identifier.otherjz000180-0018
dc.identifier.urihttps://tustorage.ulb.tu-darmstadt.de/handle/tustorage/37438
dc.publisherMDPI AG
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc600
dc.titlePredicting Multi-Period Corporate Default Based on Bayesian Estimation of Forward Intensity—Evidence from China
dc.typeArticle
dcat.distribution.pdfhttps://tustorage.ulb.tu-darmstadt.de/handle/tustorage/37439
dcat.distribution.supplierxmlhttps://tustorage.ulb.tu-darmstadt.de/handle/tustorage/37440
dspace.entity.typeDataset
relation.isDistributionOfDatasetc4a1faec-1d8a-42d7-a284-ab4b616fa50d
relation.isDistributionOfDatasetaad37498-a37f-4b40-9a0d-40a4d5576907
relation.isDistributionOfDataset449a8609-3530-43ef-9f05-c59729bda348
relation.isDistributionOfDataset.latestForDiscoveryc4a1faec-1d8a-42d7-a284-ab4b616fa50d
wdm.archivematicaaipuuid.original5e3ba369-307f-4521-9d64-b2d6b0e22d12

Files

Collections