A Novel Evolutionary Deep Learning Approach for PM2.5 Prediction Using Remote Sensing and Spatial–Temporal Data: A Case Study of Tehran

datacite.relatedItem.firstPage42
datacite.relatedItem.issue2
datacite.relatedItem.relatedIdentifierTypeISSN
datacite.relatedItem.relatedItemIdentifier2220-9964
datacite.relatedItem.relationTypeIsPublishedIn
datacite.relatedItem.titleIJGI
datacite.relatedItem.volume14
dc.contributor.authorMehrdad Kaveh
dc.contributor.authorMohammad Saadi Mesgari
dc.contributor.authorMasoud Kaveh
dc.date.accessioned2025-05-14T17:12:30Z
dc.date.available2025-05-14T17:12:30Z
dc.date.issued2025
dc.identifier.doihttps://doi.org/10.3390/ijgi14020042
dc.identifier.otherjz000158-0122
dc.identifier.urihttps://tustorage.ulb.tu-darmstadt.de/handle/tustorage/33272
dc.publisherMDPI AG
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc550
dc.titleA Novel Evolutionary Deep Learning Approach for PM2.5 Prediction Using Remote Sensing and Spatial–Temporal Data: A Case Study of Tehran
dc.typeArticle
dcat.distribution.pdfhttps://tustorage.ulb.tu-darmstadt.de/handle/tustorage/33273
dcat.distribution.supplierxmlhttps://tustorage.ulb.tu-darmstadt.de/handle/tustorage/33274
dspace.entity.typeDataset
relation.isDistributionOfDataset734d65b0-35d4-4e6a-9aa6-2bc382c8263f
relation.isDistributionOfDataset171a0e92-2bf1-4c23-bcb4-0a82f75c0d85
relation.isDistributionOfDataset9d8c99b7-4312-46e1-8bca-43f29b790536
relation.isDistributionOfDataset.latestForDiscovery734d65b0-35d4-4e6a-9aa6-2bc382c8263f
wdm.archivematicaaipuuid.original2a6d6640-daaf-4b33-b889-6216a1b5b52f

Files

Collections