mgwr: A Python Implementation of Multiscale Geographically Weighted Regression for Investigating Process Spatial Heterogeneity and Scale
| datacite.relatedItem.firstPage | 269 | |
| datacite.relatedItem.issue | 6 | |
| datacite.relatedItem.relatedIdentifierType | ISSN | |
| datacite.relatedItem.relatedItemIdentifier | 2220-9964 | |
| datacite.relatedItem.relationType | IsPublishedIn | |
| datacite.relatedItem.title | IJGI | |
| datacite.relatedItem.volume | 8 | |
| dc.contributor.author | Taylor Oshan | |
| dc.contributor.author | Ziqi Li | |
| dc.contributor.author | Wei Kang | |
| dc.contributor.author | Levi Wolf | |
| dc.contributor.author | A. Fotheringham | |
| dc.date.accessioned | 2025-05-14T15:20:10Z | |
| dc.date.available | 2025-05-14T15:20:10Z | |
| dc.date.issued | 2019 | |
| dc.identifier.doi | https://doi.org/10.3390/ijgi8060269 | |
| dc.identifier.other | jz000156-0267 | |
| dc.identifier.uri | https://tustorage.ulb.tu-darmstadt.de/handle/tustorage/28356 | |
| dc.publisher | MDPI AG | |
| dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
| dc.subject.ddc | 550 | |
| dc.title | mgwr: A Python Implementation of Multiscale Geographically Weighted Regression for Investigating Process Spatial Heterogeneity and Scale | |
| dc.type | Article | |
| dcat.distribution.pdf | https://tustorage.ulb.tu-darmstadt.de/handle/tustorage/28357 | |
| dcat.distribution.supplierxml | https://tustorage.ulb.tu-darmstadt.de/handle/tustorage/28358 | |
| dspace.entity.type | Dataset | |
| relation.isDistributionOfDataset | 6a67a808-390e-4a30-ba5a-8962387bb3e0 | |
| relation.isDistributionOfDataset | b0791259-5666-4d8b-bd09-db463a3935d0 | |
| relation.isDistributionOfDataset | 1929b2be-aae9-4474-86c5-699f32e3b459 | |
| relation.isDistributionOfDataset.latestForDiscovery | 6a67a808-390e-4a30-ba5a-8962387bb3e0 | |
| wdm.archivematicaaipuuid.original | a26cb28c-7ac4-48d3-b7c2-d4c2299a598f |