Repository logo
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Browse TUstorage
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Zilai Zheng"

Now showing 1 - 6 of 6
Results Per Page
Sort Options
  • No Thumbnail Available
    Dataset
    A GIS-Based Bivariate Logistic Regression Model for the Site-Suitability Analysis of Parcel-Pickup Lockers: A Case Study of Guangzhou, China
    (MDPI AG, 2021) Zilai Zheng; Takehiro Morimoto; Yuji Murayama
  • No Thumbnail Available
    Distribution
    A GIS-Based Bivariate Logistic Regression Model for the Site-Suitability Analysis of Parcel-Pickup Lockers: A Case Study of Guangzhou, China
    Zilai Zheng; Takehiro Morimoto; Yuji Murayama
  • No Thumbnail Available
    Distribution
    A GIS-Based Bivariate Logistic Regression Model for the Site-Suitability Analysis of Parcel-Pickup Lockers: A Case Study of Guangzhou, China
    Zilai Zheng; Takehiro Morimoto; Yuji Murayama
  • No Thumbnail Available
    Dataset
    Optimal Location Analysis of Delivery Parcel-Pickup Points Using AHP and Network Huff Model: A Case Study of Shiweitang Sub-District in Guangzhou City, China
    (MDPI AG, 2020) Zilai Zheng; Takehiro Morimoto; Yuji Murayama
  • No Thumbnail Available
    Distribution
    Optimal Location Analysis of Delivery Parcel-Pickup Points Using AHP and Network Huff Model: A Case Study of Shiweitang Sub-District in Guangzhou City, China
    Zilai Zheng; Takehiro Morimoto; Yuji Murayama
  • No Thumbnail Available
    Distribution
    Optimal Location Analysis of Delivery Parcel-Pickup Points Using AHP and Network Huff Model: A Case Study of Shiweitang Sub-District in Guangzhou City, China
    Zilai Zheng; Takehiro Morimoto; Yuji Murayama

Contact

wdm@ulb.tu-darm...

This service is provided by University and State Library Darmstadt

Cookie settings / Privacy policy / About / Impressum

DFG-Logo mit Schriftzug und Förderhinweis

NFDI4Ing wird gefördert durch die DFG unter Projektnummer 442146713