Repository logo
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Browse TUstorage
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Wanzeng Liu"

Now showing 1 - 6 of 6
Results Per Page
Sort Options
  • No Thumbnail Available
    Dataset
    Classification of Seismaesthesia Information and Seismic Intensity Assessment by Multi-Model Coupling
    (MDPI AG, 2023) Qingzhou Lv; Wanzeng Liu; Ran Li; Hui Yang; Yuan Tao; Mengjiao Wang
  • No Thumbnail Available
    Distribution
    Classification of Seismaesthesia Information and Seismic Intensity Assessment by Multi-Model Coupling
    Qingzhou Lv; Wanzeng Liu; Ran Li; Hui Yang; Yuan Tao; Mengjiao Wang
  • No Thumbnail Available
    Distribution
    Classification of Seismaesthesia Information and Seismic Intensity Assessment by Multi-Model Coupling
    Qingzhou Lv; Wanzeng Liu; Ran Li; Hui Yang; Yuan Tao; Mengjiao Wang
  • No Thumbnail Available
    Dataset
    Geographic Knowledge Graph Attribute Normalization: Improving the Accuracy by Fusing Optimal Granularity Clustering and Co-Occurrence Analysis
    (MDPI AG, 2022) Chuan Yin; Binyu Zhang; Wanzeng Liu; Mingyi Du; Nana Luo; Xi Zhai; Tu Ba
  • No Thumbnail Available
    Distribution
    Geographic Knowledge Graph Attribute Normalization: Improving the Accuracy by Fusing Optimal Granularity Clustering and Co-Occurrence Analysis
    Chuan Yin; Binyu Zhang; Wanzeng Liu; Mingyi Du; Nana Luo; Xi Zhai; Tu Ba
  • No Thumbnail Available
    Distribution
    Geographic Knowledge Graph Attribute Normalization: Improving the Accuracy by Fusing Optimal Granularity Clustering and Co-Occurrence Analysis
    Chuan Yin; Binyu Zhang; Wanzeng Liu; Mingyi Du; Nana Luo; Xi Zhai; Tu Ba

Contact

wdm@ulb.tu-darm...

This service is provided by University and State Library Darmstadt

Cookie settings / Privacy policy / About / Impressum

DFG-Logo mit Schriftzug und Förderhinweis

NFDI4Ing wird gefördert durch die DFG unter Projektnummer 442146713