Repository logo
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Browse TUstorage
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Didit Adytia"

Now showing 1 - 6 of 6
Results Per Page
Sort Options
  • No Thumbnail Available
    Distribution
    A Deep Learning Approach for Wave Forecasting Based on a Spatially Correlated Wind Feature, with a Case Study in the Java Sea, Indonesia
    Didit Adytia; Deni Saepudin; Sri Redjeki Pudjaprasetya; Semeidi Husrin; Ardhasena Sopaheluwakan
  • Loading...
    Thumbnail Image
    Distribution
    A Deep Learning Approach for Wave Forecasting Based on a Spatially Correlated Wind Feature, with a Case Study in the Java Sea, Indonesia
    Didit Adytia; Deni Saepudin; Sri Redjeki Pudjaprasetya; Semeidi Husrin; Ardhasena Sopaheluwakan
  • No Thumbnail Available
    Dataset
    A Deep Learning Approach for Wave Forecasting Based on a Spatially Correlated Wind Feature, with a Case Study in the Java Sea, Indonesia
    (MDPI AG, 2022) Didit Adytia; Deni Saepudin; Sri Redjeki Pudjaprasetya; Semeidi Husrin; Ardhasena Sopaheluwakan
  • No Thumbnail Available
    Dataset
    Staggered Conservative Scheme for 2-Dimensional Shallow Water Flows
    (MDPI AG, 2020) Novry Erwina; Didit Adytia; Sri Redjeki Pudjaprasetya; Toni Nuryaman
  • Loading...
    Thumbnail Image
    Distribution
    Staggered Conservative Scheme for 2-Dimensional Shallow Water Flows
    Novry Erwina; Didit Adytia; Sri Redjeki Pudjaprasetya; Toni Nuryaman
  • No Thumbnail Available
    Distribution
    Staggered Conservative Scheme for 2-Dimensional Shallow Water Flows
    Novry Erwina; Didit Adytia; Sri Redjeki Pudjaprasetya; Toni Nuryaman

Contact

wdm@ulb.tu-darm...

This service is provided by University and State Library Darmstadt

Cookie settings / Privacy policy / About / Impressum

DFG-Logo mit Schriftzug und Förderhinweis

NFDI4Ing wird gefördert durch die DFG unter Projektnummer 442146713