Repository logo
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Browse TUstorage
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Di Zhang"

Now showing 1 - 6 of 6
Results Per Page
Sort Options
  • No Thumbnail Available
    Dataset
    A Hybrid Population Distribution Prediction Approach Integrating LSTM and CA Models with Micro-Spatiotemporal Granularity: A Case Study of Chongming District, Shanghai
    (MDPI AG, 2021) Pengyuan Wang; Xiao Huang; Joseph Mango; Di Zhang; Dong Xu; Xiang Li
  • No Thumbnail Available
    Distribution
    A Hybrid Population Distribution Prediction Approach Integrating LSTM and CA Models with Micro-Spatiotemporal Granularity: A Case Study of Chongming District, Shanghai
    Pengyuan Wang; Xiao Huang; Joseph Mango; Di Zhang; Dong Xu; Xiang Li
  • No Thumbnail Available
    Distribution
    A Hybrid Population Distribution Prediction Approach Integrating LSTM and CA Models with Micro-Spatiotemporal Granularity: A Case Study of Chongming District, Shanghai
    Pengyuan Wang; Xiao Huang; Joseph Mango; Di Zhang; Dong Xu; Xiang Li
  • No Thumbnail Available
    Distribution
    Hybrid RANS/LES Turbulence Model Applied to a Transitional Unsteady Boundary Layer on Wind Turbine Airfoil
    Di Zhang; Daniel R. Cadel; Eric G. Paterson; K. Todd Lowe
  • No Thumbnail Available
    Dataset
    Hybrid RANS/LES Turbulence Model Applied to a Transitional Unsteady Boundary Layer on Wind Turbine Airfoil
    (MDPI AG, 2019) Di Zhang; Daniel R. Cadel; Eric G. Paterson; K. Todd Lowe
  • Loading...
    Thumbnail Image
    Distribution
    Hybrid RANS/LES Turbulence Model Applied to a Transitional Unsteady Boundary Layer on Wind Turbine Airfoil
    Di Zhang; Daniel R. Cadel; Eric G. Paterson; K. Todd Lowe

Contact

wdm@ulb.tu-darm...

This service is provided by University and State Library Darmstadt

Cookie settings / Privacy policy / About / Impressum

DFG-Logo mit Schriftzug und Förderhinweis

NFDI4Ing wird gefördert durch die DFG unter Projektnummer 442146713